In mathematics, the trigonometric functions (also called circular functions) are functions of an angle. They are used to relate the angles of a triangle to the lengths of the sides of a triangle. Trigonometric functions are important in the study of triangles and modeling periodic phenomena, among many other applications.
The most familiar trigonometric functions are the sine, cosine, and tangent. In the context of the standard unit circle with radius 1, where a triangle is formed by a ray originating at the origin and making some angle with the x-axis, the sine of the angle gives the length of the y-component (rise) of the triangle, the cosine gives the length of the x-component (run), and the tangent function gives the slope (y-component divided by the x-component). More precise definitions are detailed below. Trigonometric functions are commonly defined as ratios of two sides of a right triangle containing the angle, and can equivalently be defined as the lengths of various line segments from a unit circle. More modern definitions express them as infinite series or as solutions of certain differential equations, allowing their extension to arbitrary positive and negative values and even to complex numbers.
Trigonometric functions have a wide range of uses including computing unknown lengths and angles in triangles (often right triangles). In this use, trigonometric functions are used for instance in navigation, engineering, and physics. A common use in elementary physics is resolving a vector into Cartesian coordinates. The sine and cosine functions are also commonly used to model periodic function phenomena such as sound and light waves, the position and velocity of harmonic oscillators, sunlight intensity and day length, and average temperature variations through the year.
In modern usage, there are six basic trigonometric functions, tabulated here with equations that relate them to one another. Especially with the last four, these relations are often taken as the definitions of those functions, but one can define them equally well geometrically, or by other means, and then derive these relations.
Contents[ |
Right-angled triangle definitions
A right triangle always includes a 90° (π/2 radians) angle, here labeled C. Angles A and B may vary. Trigonometric functions specify the relationships among side lengths and interior angles of a right triangle.
The notion that there should be some standard correspondence between the lengths of the sides of a triangle and the angles of the triangle comes as soon as one recognizes that similar triangles maintain the same ratios between their sides. That is, for any similar triangle the ratio of the hypotenuse (for example) and another of the sides remains the same. If the hypotenuse is twice as long, so are the sides. It is these ratios that the trigonometric functions express.
To define the trigonometric functions for the angle A, start with any right triangle that contains the angle A. The three sides of the triangle are named as follows:
- The hypotenuse is the side opposite the right angle, in this case side h. The hypotenuse is always the longest side of a right-angled triangle.
- The opposite side is the side opposite to the angle we are interested in (angle A), in this case side a.
- The adjacent side is the side that is in contact with (adjacent to) both the angle we are interested in (angle A) and the right angle, in this case side b.
The trigonometric functions are summarized in the following table and described in more detail below. The angle θ is the angle between the hypotenuse and the adjacent line – the angle at A in the accompanying diagram.
Function | Abbreviation | Description | Identities (using radians) |
---|---|---|---|
Sine | sin | ||
Cosine | cos | ||
Tangent | tan (or tg) | ||
Cotangent | cot (or ctg or ctn) | ||
Secant | sec | ||
Cosecant | csc (or cosec) |
The sine, tangent, and secant functions of an angle constructed geometrically in terms of a unit circle. The number θ is the length of the curve; thus angles are being measured in radians. The secant and tangent functions rely on a fixed vertical line and the sine function on a moving vertical line. ("Fixed" in this context means not moving as θ changes; "moving" means depending on θ.) Thus, as θ goes from 0 up to a right angle, sin θ goes from 0 to 1, tan θ goes from 0 to ∞, and sec θ goes from 1 to ∞. |
Sine, cosine, and tangent
The sine of an angle is the ratio of the length of the opposite side to the length of the hypotenuse. In our caseThe cosine of an angle is the ratio of the length of the adjacent side to the length of the hypotenuse. In our case
[edit] Reciprocal functions
The remaining three functions are best defined using the above three functions.The cosecant csc(A), or cosec(A), is the reciprocal of sin(A), i.e. the ratio of the length of the hypotenuse to the length of the opposite side:
[edit] Slope definitions
Equivalent to the right-triangle definitions the trigonometric functions can be defined in terms of the rise, run, and slope of a line segment relative to some horizontal line. The slope is commonly taught as "rise over run" or rise/run. The three main trigonometric functions are commonly taught in the order sine, cosine, tangent. With a segment length of 1 (as in a unit circle) the following correspondence of definitions exists:- Sine is first, rise is first. Sine takes an angle and tells the rise when the length of the line is 1.
- Cosine is second, run is second. Cosine takes an angle and tells the run when the length of the line is 1.
- Tangent is the slope formula that combines the rise and run. Tangent takes an angle and tells the slope, and tells the rise when the run is 1.
While the length of the line segment makes no difference for the slope (the slope does not depend on the length of the slanted line), it does affect rise and run. To adjust and find the actual rise and run when the line does not have a length of 1, just multiply the sine and cosine by the line length. For instance, if the line segment has length 5, the run at an angle of 7° is 5 cos(7°)
[edit] Unit-circle definitions
The six trigonometric functions can also be defined in terms of the unit circle, the circle of radius one centered at the origin. The unit circle definition provides little in the way of practical calculation; indeed it relies on right triangles for most angles.
The unit circle definition does, however, permit the definition of the trigonometric functions for all positive and negative arguments, not just for angles between 0 and π/2 radians.
It also provides a single visual picture that encapsulates at once all the important triangles. From the Pythagorean theorem the equation for the unit circle is:
Let a line through the origin, making an angle of θ with the positive half of the x-axis, intersect the unit circle. The x- and y-coordinates of this point of intersection are equal to cos θ and sin θ, respectively.
The triangle in the graphic enforces the formula; the radius is equal to the hypotenuse and has length 1, so we have sin θ = y/1 and cos θ = x/1. The unit circle can be thought of as a way of looking at an infinite number of triangles by varying the lengths of their legs but keeping the lengths of their hypotenuses equal to 1.
Note that these values can easily be memorized in the form
For angles greater than 2π or less than −2π, simply continue to rotate around the circle; sine and cosine are periodic functions with period 2π:
The smallest positive period of a periodic function is called the primitive period of the function.
The primitive period of the sine or cosine is a full circle, i.e. 2π radians or 360 degrees.
Above, only sine and cosine were defined directly by the unit circle, but other trigonometric functions can be defined by:
- The primitive period of the secant, or cosecant is also a full circle, i.e. 2π radians or 360 degrees.
- The primitive period of the tangent or cotangent is only a half-circle, i.e. π radians or 180 degrees.
The image at right includes a graph of the tangent function.
- Its θ-intercepts correspond to those of sin(θ) while its undefined values correspond to the θ-intercepts of cos(θ).
- The function changes slowly around angles of kπ, but changes rapidly at angles close to (k + 1/2)π.
- The graph of the tangent function also has a vertical asymptote at θ = (k + 1/2)π, the θ-intercepts of the cosine function, because the function approaches infinity as θ approaches (k + 1/2)π from the left and minus infinity as it approaches (k + 1/2)π from the right.
Alternatively, all of the basic trigonometric functions can be defined in terms of a unit circle centered at O (as shown in the picture to the right), and similar such geometric definitions were used historically.
- In particular, for a chord AB of the circle, where θ is half of the subtended angle, sin(θ) is AC (half of the chord), a definition introduced in India[2] (see history).
- cos(θ) is the horizontal distance OC, and versin(θ) = 1 − cos(θ) is CD.
- tan(θ) is the length of the segment AE of the tangent line through A, hence the word tangent for this function. cot(θ) is another tangent segment, AF.
- sec(θ) = OE and csc(θ) = OF are segments of secant lines (intersecting the circle at two points), and can also be viewed as projections of OA along the tangent at A to the horizontal and vertical axes, respectively.
- DE is exsec(θ) = sec(θ) − 1 (the portion of the secant outside, or ex, the circle).
- From these constructions, it is easy to see that the secant and tangent functions diverge as θ approaches π/2 (90 degrees) and that the cosecant and cotangent diverge as θ approaches zero. (Many similar constructions are possible, and the basic trigonometric identities can also be proven graphically.[3])
[edit] Series definitions
The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full cycle centered on the origin.
Combining these two series gives Euler's formula: cos x + i sin x = eix.
Other series can be found.[5] For the following trigonometric functions:
- Un is the nth up/down number,
- Bn is the nth Bernoulli number, and
- En (below) is the nth Euler number.
Cosecant
Cotangent
[edit] Relationship to exponential function and complex numbers
Euler's formula illustrated with the three dimensional helix, starting with the 2-D orthogonal components of the unit circle, sine and cosine (using θ = t ).
Furthermore, this allows for the definition of the trigonometric functions for complex arguments z:
[edit] Complex graphs
In the following graphs, the domain is the complex plane pictured, and the range values are indicated at each point by color. Brightness indicates the size (absolute value) of the range value, with black being zero. Hue varies with argument, or angle, measured from the positive real axis. (more)[edit] Definitions via differential equations
Both the sine and cosine functions satisfy the differential equation- the sine function is the unique solution satisfying the initial condition
and
- the cosine function is the unique solution satisfying the initial condition
.
Further, the observation that sine and cosine satisfies y′′ = −y means that they are eigenfunctions of the second-derivative operator.
The tangent function is the unique solution of the nonlinear differential equation
[edit] The significance of radians
Radians specify an angle by measuring the length around the path of the unit circle and constitute a special argument to the sine and cosine functions. In particular, only sines and cosines that map radians to ratios satisfy the differential equations that classically describe them. If an argument to sine or cosine in radians is scaled by frequency,This means that these sines and cosines are different functions, and that the fourth derivative of sine will be sine again only if the argument is in radians.
[edit] Identities
Main article: List of trigonometric identities
Many identities interrelate the trigonometric functions. Among the most frequently used is the Pythagorean identity, which states that for any angle, the square of the sine plus the square of the cosine is 1. This is easy to see by studying a right triangle of hypotenuse 1 and applying the Pythagorean theorem. In symbolic form, the Pythagorean identity is writtenOther key relationships are the sum and difference formulas, which give the sine and cosine of the sum and difference of two angles in terms of sines and cosines of the angles themselves. These can be derived geometrically, using arguments that date to Ptolemy. One can also produce them algebraically using Euler's formula.
When the two angles are equal, the sum formulas reduce to simpler equations known as the double-angle formulae.
These identities can also be used to derive the product-to-sum identities that were used in antiquity to transform the product of two numbers into a sum of numbers and greatly speed operations, much like the logarithm function.
[edit] Calculus
For integrals and derivatives of trigonometric functions, see the relevant sections of Differentiation of trigonometric functions, Lists of integrals and List of integrals of trigonometric functions. Below is the list of the derivatives and integrals of the six basic trigonometric functions. The number C is a constant of integration.[edit] Definitions using functional equations
In mathematical analysis, one can define the trigonometric functions using functional equations based on properties like the sum and difference formulas. Taking as given these formulas and the Pythagorean identity, for example, one can prove that only two real functions satisfy those conditions. Symbolically, we say that there exists exactly one pair of real functions —Other derivations, starting from other functional equations, are also possible, and such derivations can be extended to the complex numbers. As an example, this derivation can be used to define trigonometry in Galois fields.
[edit] Computation
The computation of trigonometric functions is a complicated subject, which can today be avoided by most people because of the widespread availability of computers and scientific calculators that provide built-in trigonometric functions for any angle. This section, however, describes details of their computation in three important contexts: the historical use of trigonometric tables, the modern techniques used by computers, and a few "important" angles where simple exact values are easily found.The first step in computing any trigonometric function is range reduction—reducing the given angle to a "reduced angle" inside a small range of angles, say 0 to π/2, using the periodicity and symmetries of the trigonometric functions.
Main article: Generating trigonometric tables
Prior to computers, people typically evaluated trigonometric functions by interpolating from a detailed table of their values, calculated to many significant figures. Such tables have been available for as long as trigonometric functions have been described (see History below), and were typically generated by repeated application of the half-angle and angle-addition identities starting from a known value (such as sin(π/2) = 1).Modern computers use a variety of techniques.[10] One common method, especially on higher-end processors with floating point units, is to combine a polynomial or rational approximation (such as Chebyshev approximation, best uniform approximation, and Padé approximation, and typically for higher or variable precisions, Taylor and Laurent series) with range reduction and a table lookup—they first look up the closest angle in a small table, and then use the polynomial to compute the correction.[11] Devices that lack hardware multipliers often use an algorithm called CORDIC (as well as related techniques), which uses only addition, subtraction, bitshift, and table lookup. These methods are commonly implemented in hardware floating-point units for performance reasons.
For very high precision calculations, when series expansion convergence becomes too slow, trigonometric functions can be approximated by the arithmetic-geometric mean, which itself approximates the trigonometric function by the (complex) elliptic integral.[12]
Main article: Exact trigonometric constants
Finally, for some simple angles, the values can be easily computed by hand using the Pythagorean theorem, as in the following examples. For example, the sine, cosine and tangent of any integer multiple of π / 60 radians (3°) can be found exactly by hand.Consider a right triangle where the two other angles are equal, and therefore are both π / 4 radians (45°). Then the length of side b and the length of side a are equal; we can choose a = b = 1. The values of sine, cosine and tangent of an angle of π / 4 radians (45°) can then be found using the Pythagorean theorem:
[edit] Inverse functions
Main article: Inverse trigonometric functions
The trigonometric functions are periodic, and hence not injective, so strictly they do not have an inverse function. Therefore to define an inverse function we must restrict their domains so that the trigonometric function is bijective. In the following, the functions on the left are defined by the equation on the right; these are not proved identities. The principal inverses are usually defined as:Just like the sine and cosine, the inverse trigonometric functions can also be defined in terms of infinite series. For example,
[edit] Properties and applications
Main article: Uses of trigonometry
The trigonometric functions, as the name suggests, are of crucial importance in trigonometry, mainly because of the following two results.[edit] Law of sines
The law of sines states that for an arbitrary triangle with sides a, b, and c and angles opposite those sides A, B and C:It can be proven by dividing the triangle into two right ones and using the above definition of sine. The law of sines is useful for computing the lengths of the unknown sides in a triangle if two angles and one side are known. This is a common situation occurring in triangulation, a technique to determine unknown distances by measuring two angles and an accessible enclosed distance.
[edit] Law of cosines
The law of cosines (also known as the cosine formula) is an extension of the Pythagorean theorem:The law of cosines can be used to determine a side of a triangle if two sides and the angle between them are known. It can also be used to find the cosines of an angle (and consequently the angles themselves) if the lengths of all the sides are known.
[edit] Law of tangents
The following all form the law of tangents[13][edit] Law of cotangents
If[edit] Other useful properties
[edit] Sine and cosine of sums of angles
See also: Angle addition formula
Detailed, diagrammed construction proofs, by geometric construction, of formulas for the sine and cosine of the sum of two angles are available for download as a four-page PDF document at File:Sine Cos Proofs.pdf.[edit] Periodic functions
Superposition of sinusoidal wave basis functions (bottom) to form a sawtooth wave (top); the basis functions have wavelengths λ/k (k = integer) shorter than the wavelength λ of the sawtooth itself (except for k = 1). All basis functions have nodes at the nodes of the sawtooth, but all but the fundamental have additional nodes. The oscillation about the sawtooth is called the Gibbs phenomenon
Trigonometric functions also prove to be useful in the study of general periodic functions. The characteristic wave patterns of periodic functions are useful for modeling recurring phenomena such as sound or light waves.[15]
Under rather general conditions, a periodic function ƒ(x) can be expressed as a sum of sine waves or cosine waves in a Fourier series.[16] Denoting the sine or cosine basis functions by φk, the expansion of the periodic function ƒ(t) takes the form:
[edit] History
Main article: History of trigonometric functions
While the early study of trigonometry can be traced to antiquity, the trigonometric functions as they are in use today were developed in the medieval period. The chord function was discovered by Hipparchus of Nicaea (180–125 BC) and Ptolemy of Roman Egypt (90–165 AD).The functions sine and cosine can be traced to the jyā and koti-jyā functions used in Gupta period Indian astronomy (Aryabhatiya, Surya Siddhanta), via translation from Sanskrit to Arabic and then from Arabic to Latin.[17]
All six trigonometric functions in current use were known in Islamic mathematics by the 9th century, as was the law of sines, used in solving triangles.[18] al-Khwārizmī produced tables of sines, cosines and tangents. They were studied by authors including Omar Khayyám, Bhāskara II, Nasir al-Din al-Tusi, Jamshīd al-Kāshī (14th century), Ulugh Beg (14th century), Regiomontanus (1464), Rheticus, and Rheticus' student Valentinus Otho[citation needed]
Madhava of Sangamagrama (c. 1400) made early strides in the analysis of trigonometric functions in terms of infinite series.[19]
The first published use of the abbreviations 'sin', 'cos', and 'tan' is by the 16th century French mathematician Albert Girard.
In a paper published in 1682, Leibniz proved that sin x is not an algebraic function of x.[20]
Leonhard Euler's Introductio in analysin infinitorum (1748) was mostly responsible for establishing the analytic treatment of trigonometric functions in Europe, also defining them as infinite series and presenting "Euler's formula", as well as the near-modern abbreviations sin., cos., tang., cot., sec., and cosec.[2]
A few functions were common historically, but are now seldom used, such as the chord (crd(θ) = 2 sin(θ/2)), the versine (versin(θ) = 1 − cos(θ) = 2 sin2(θ/2)) (which appeared in the earliest tables [2]), the haversine (haversin(θ) = versin(θ) / 2 = sin2(θ/2)), the exsecant (exsec(θ) = sec(θ) − 1) and the excosecant (excsc(θ) = exsec(π/2 − θ) = csc(θ) − 1). Many more relations between these functions are listed in the article about trigonometric identities.
Etymologically, the word sine derives from the Sanskrit word for half the chord, jya-ardha, abbreviated to jiva. This was transliterated in Arabic as jiba, written jb, vowels not being written in Arabic. Next, this transliteration was mis-translated in the 12th century into Latin as sinus, under the mistaken impression that jb stood for the word jaib, which means "bosom" or "bay" or "fold" in Arabic, as does sinus in Latin.[21] Finally, English usage converted the Latin word sinus to sine.[22] The word tangent comes from Latin tangens meaning "touching", since the line touches the circle of unit radius, whereas secant stems from Latin secans — "cutting" — since the line cuts the circle.
No comments:
Post a Comment